Concrete Driveways

Overview

Concrete driveways can be long lasting and durable provided proper design, materials and construction methods are followed. This bulletin describes common issues encountered with concrete driveways and provides information on how to select materials, build and maintain driveways.

Various factors can lead to surface imperfections and cracks in concrete driveways. For example, hot or cold weather conditions during concrete placement may lead to rapid surface drying or freezing which may result in imperfections. Other factors include: starting the finishing too early, over finishing or using improper finishing tools, using deicing salts, and inadequate use of control joints or subgrade preparation.

Concrete driveway cracks may be covered under certain circumstances by home warranty coverage. It is advisable to consult the HPO Residential Construction Performance Guide for more details.

As the Building Code has few requirements for driveways, extra care may be needed to differentiate Code requirements from better building practices.

Various factors can lead to surface imperfections and cracks in concrete driveways. For example, hot or cold weather conditions during concrete placement may lead to rapid surface drying or freezing which may result in imperfections. Other factors include: starting the finishing too early, over finishing or using improper finishing tools, using deicing salts, and inadequate use of control joints or subgrade preparation.
Dry Shrinkage Cracks

Plastic shrinkage cracks are caused by the rapid loss of water from the surface of the concrete before the concrete has had time to set. These cracks form after concrete placement and consolidation, while the concrete is still plastic. They are relatively shallow in depth and form parallel to one another. The cracks are unappealing but rarely impact strength or durability due to their shallow depth.

Bleeding

Bleeding is the irregular raising of a thin layer at the surface of concrete during or after finishing. Bleeding happens just under the surface of the concrete when either the bleed water or entrapped air is prevented from escaping. They typically occur when the top surface of the concrete has been sealed prematurely during the finishing operations. It can also occur if the gradient in temperature or moisture between top and bottom is too large or if the outside temperature is too cold during installation.

Scaling

Scaling is local flaking or peeling off of the near-surface portion of hardened concrete. Typically caused by freeze-thaw exposure, scaling begins as small localized patches that are expanded and merge together to produce large scaled areas. Scaling can range from light scaling, where no coarse aggregate is exposed, to very severe scaling that involves loss of coarse aggregate particles generally to a depth of greater than 20 mm. Scaling can also be caused by improper material selection, finishing or curing, or if outside temperature is too cold during installation.

Crazing

Crazing is the development of a network of fine random cracks extending below the surface of hardened concrete. It is caused by shrinkage of the drying concrete layer. The cracks do not affect the structural integrity of the concrete, but are unappealing. Typically, crazing occurs at an early age and is apparent by the end of the first week after the concrete is placed. It can be caused by certain chemical admixtures, rapid surface drying and/or improper curing.

Pop-outs

Pop-outs are features of the concrete surface caused by the expansion of water inside porous coarse aggregates located just below the concrete surface. If the local aggregate contains soft, porous particles (like chert) it can absorb significant quantities of moisture and cause failure during freeze-thaw cycles. Pop-outs are distinguished from mortar bleeding by the presence of fractured aggregate in the pop-out. Pop-outs can also occur due to improper curing or if outside temperature is too cold during installation.

Mortar Raising

Mortar raising is the raising of small sections of concrete mortar directly on top of the coarse aggregate particles. It typically occurs when the concrete is not cured properly due to poor or improper curing. It is usually within one to three days. Mortar raising is typically associated with shallow depth and consists of distinct loss of mortar (flakes) that occur directly on top of the coarse aggregate particles in the concrete.

Uncontrolled dry shrinkage cracking of a structure can result from internal stresses caused by external or internal restrained from reduced moisture content. Concrete both expands and contracts with changes in moisture and temperature, and deflects depending on the element size, reinforcing, loading force and support conditions. All these factors can lead to uncontrolled cracking in the improper design and joint details are not addressed prior to construction. Other factors can include inadequately prepared subsurface, adding too much water to the concrete mixture and improperly finishing or curing.

The following table presents typical deficiencies encountered with concrete driveways.

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic shrinkage cracks</td>
<td>Plastic shrinkage cracks are caused by the rapid loss of water from the surface of the concrete before it has had time to set. These cracks form after concrete placement and consolidation, while the concrete is still plastic. They are relatively shallow in depth and form parallel to one another. The cracks are unappealing but rarely impact strength or durability due to their shallow depth.</td>
</tr>
<tr>
<td>Bleeding</td>
<td>Bleeding is the irregular raising of a thin layer at the surface of concrete during or after finishing. Bleeding happens just under the surface of the concrete when either the bleed water or entrapped air is prevented from escaping. They typically occur when the top surface of the concrete has been sealed prematurely during the finishing operations. It can also occur if the gradient in temperature or moisture between top and bottom is too large or if the outside temperature is too cold during installation.</td>
</tr>
<tr>
<td>Scaling</td>
<td>Scaling is local flaking or peeling off of the near-surface portion of hardened concrete. Typically caused by freeze-thaw exposure, scaling begins as small localized patches that are expanded and merge together to produce large scaled areas. Scaling can range from light scaling, where no coarse aggregate is exposed, to very severe scaling that involves loss of coarse aggregate particles generally to a depth of greater than 20 mm. Scaling can also be caused by improper material selection, finishing or curing, or if outside temperature is too cold during installation.</td>
</tr>
<tr>
<td>Crazing</td>
<td>Crazing is the development of a network of fine random cracks extending below the surface of hardened concrete. It is caused by shrinkage of the drying concrete layer. The cracks do not affect the structural integrity of the concrete, but are unappealing. Typically, crazing occurs at an early age and is apparent by the end of the first week after the concrete is placed. It can be caused by certain chemical admixtures, rapid surface drying and/or improper curing.</td>
</tr>
<tr>
<td>Pop-outs</td>
<td>Pop-outs are features of the concrete surface caused by the expansion of water inside porous coarse aggregates located just below the concrete surface. If the local aggregate contains soft, porous particles (like chert) it can absorb significant quantities of moisture and cause failure during freeze-thaw cycles. Pop-outs are distinguished from mortar bleeding by the presence of fractured aggregate in the pop-out. Pop-outs can also occur due to improper curing or if outside temperature is too cold during installation.</td>
</tr>
<tr>
<td>Mortar Raising</td>
<td>Mortar raising is the raising of small sections of concrete mortar directly on top of the coarse aggregate particles. It typically occurs when the concrete is not cured properly due to poor or improper curing. It is usually within one to three days. Mortar raising is typically associated with shallow depth and consists of distinct loss of mortar (flakes) that occur directly on top of the coarse aggregate particles in the concrete.</td>
</tr>
<tr>
<td>Uncontrolled dry shrinkage cracking</td>
<td>Uncontrolled dry shrinkage cracking of a structure can result from internal stresses caused by external or internal restrained from reduced moisture content. Concrete both expands and contracts with changes in moisture and temperature, and deflects depending on the element size, reinforcing, loading force and support conditions. All these factors can lead to uncontrolled cracking in the improper design and joint details are not addressed prior to construction. Other factors can include inadequately prepared subsurface, adding too much water to the concrete mixture and improperly finishing or curing.</td>
</tr>
</tbody>
</table>
Crazing

Scaling

Mortar flaking

Deficiency and joint details are not addressed prior to construction. Other factors can include deflects depending on the element size, reinforcing, loading force and support both expands and contracts with changes in moisture and temperature, and the coarse aggregate particles in the concrete.

• Pop-outs: The top surface of the concrete has been sealed prematurely during the finishing of the concrete before the concrete has had time to set. These cracks form after the first week after the concrete is placed. It can be caused by certain chemical discolouration and crazing. Pop-outs can occur if the local aggregate contains soft, porous particles (like chert) it can absorb significant quantities of moisture and fracture during freeze-thaw cycles.

• Local aggregate contains soft, porous particles (like chert) it can absorb significant quantities of moisture and fracture during freeze-thaw cycles. Pop-outs are fractures of the concrete surface caused by the expansion of water placed with a maximum joint spacing not exceeding 6 times the thickness of the slab.

• The concrete can be placed to finish grade using a straight board on edge between forms in a “sawing motion.” The edges of the forms should be tapped with a hammer to consolidate the concrete. Adding water to increase the slump or workability has a very detrimental effect on both the strength and durability of the concrete.

• Maximum water—cement ratio of 0.4 (use an edging tool to finish edges). Steel or fresno trowels should be used for the finishing operations, resulting in a hard-troweled concrete surface, leaving a weakened surface. Air entrained concrete can cause discolouration and crazing. Pop-outs can occur if the local aggregate contains soft, porous particles (like chert) it can absorb significant quantities of moisture and fracture during freeze-thaw cycles.

Concrete Slab Design

A number of issues can arise without the proper design of the concrete slab thickness and control joints. This section provides a few design recommendations:

Generally, it is recommended that the subgrade material for concrete driveways is a granular “A” material to a minimum thickness of 60 mm on stable grade. Concrete-thicknesses are normally recommended based on intended use:

Cars and pick-ups

Light trucks

Heavy truck usage

100 mm

125 mm

150 mm

Steel reinforcement can be added. These reinforcement will not prevent cracks, but will help hold them together if they occur. Reinforcements can be either wire mesh or steel rebar placed in a grid pattern centered within the concrete. As concrete ages, it shrinks due to water evaporation and cooling of the concrete, which can cause cracking. Proper placement of control joints can help control the location and the extent of cracking.

Control joints should be:

• Placed with a maximum joint spacing not exceeding 6 times the thickness of the slab.

• Cut as soon as possible without pulling the aggregate out, usually within four to 12 hours after the concrete has been placed. Never early entry (green cutting) concrete cuts allow for earlier cutting.

• Cut to a minimum depth of one third the thickness of the slab to ensure that the concrete cracks at the saw-cut location.

• Placed such that the resulting panels created by control joints are approximately square and parallel to the building line (use a laser or string line to locate control joints.

• The proper amount of form release should be applied to the formwork prior to concrete placement.

• The subgrade should be dampened without leaving free-water on the concrete surface. Ensuring proper drainage of the aggregate base material is a critical component of the design.

After the subgrade is prepared, the following preparations are needed for concrete placement:

• Insulation joints need to be installed against any existing concrete surface (house walls, garage floors, etc.) using asphalt-impregnated boards.

• Driveway should be shaped using stiff wood forms kept in position with stakes spaced not more than 1 m (3 ft) apart. The top of the stakes should be flush with, or slightly below, the top of the form at finished grade.

• The exact location of control joints need to be planned before starting the project and their locations marked on the forms prior to concrete placement.

Subgrade and Site Preparation

Properly preparing the subgrade site for the concrete driveway is important to prevent a number of deficiencies. If the subgrade is not properly prepared and compacted, uncontrolled shrinkage cracks can occur.

To prepare the subgrade, topsoil needs to be removed to the native soil before placing the granular material to a minimum depth and consists of distinct loss of mortar (flakes) that occur directly on top of the coarse aggregate particles. It typically occurs when the concrete is not cured and bottom is too large or if the outside temperature is too cold during installation.

Deficiency

Concrete Slab Design

Residential Construction

Materials and Specifications

Concrete Slab Design

Subgrade and Site Preparation

Concrete Slab Design

Residential Construction

Materials and Specifications

Concrete Slab Design

Subgrade and Site Preparation

Concrete Slab Design

Residential Construction

Materials and Specifications

Concrete Slab Design

Residential Construction

Materials and Specifications
Concrete driveway.

Concrete as a material can be produced using by-products of other industries, such as fly ash and slag (referred to as supplemental cementing materials or SCMs), to provide a more sustainable approach to building construction. These materials, when used in the appropriate proportions, can increase both the strength and durability of the concrete. SCM options can be discussed with the concrete supplier.

Concrete Placement and Finishing

Proper concrete placement and finishing are important in preventing deficiencies. These can include:

- Discolouration if the flatwork finisher improperly estimates the volume of the finishing operations, resulting in a ‘battered’ surface.
- Scaling when finishing operations are completed while the bleed water is still on the concrete surface.
- Watersheds if the concrete surface is permeantly sealed due to improper finishing procedures or tools, a dry shale is permanently applied to the concrete surface, or insufficient or excessive vibrations are used during concrete placement.

Materials and Specifications

Use of improper materials may cause numerous deficiencies, from scaling due to improper concrete selection to uncontrolled shrinkage cracks. If too much water is added to the mix or the mix is inadequately prepared, adding too much water to the concrete mixture both expands and contracts with changes in moisture and temperature, and chemical admixtures such as colloid chloride added to the concrete can cause discoloration and cracking. Pop-outs can occur if the aggregate contains soft porous materials.

Concrete selection should follow guidelines outlined in CAN/ACI A201 “Concrete Materials and Methods of Concrete Construction” and Methods of Test for Concrete.” The concrete supplied should be a Class CC, 32 NPA, B 45 w/cm/cement ratio, with 8% air entrainment. (Assuming 20 mm coarse aggregate is used in the concrete mix design).

For coloured concrete, it is recommended that the colour be a uniformity mixed into the mix of batching. The entrainment should be measured after the colour has been mixed in. It is recommended that the contractor prepare a sample coloured bolt to ensure the customer’s expectations for colour are met.

Concrete coming out of the chute onto graded gravel.

• Uncontrolled dry shrinkage cracks when improper finishing procedures are implemented or the installation of contraction joints is not completed in a timely fashion.

One of the critical elements in proper placement and finishing is to ensure there is sufficient labour on site when the concrete is delivered. Three or more people are generally required, depending on the size of the driveway, the weather, particular design aspects, etc.

In addition, a number of steps should be followed during placement and finishing:

- The subgrade should be dampened without leaving standing water on the subgrade or entrapped air is prevented from escaping. They typically occur when the concrete is still plastic. They are relatively shallow in depth and tend to form parallel to one another. The cracks are crazed cracks extending below the surface. They are typically caused by freeze-thaw exposure, scaling begins as small localized patches that can expand and merge together to produce large scaled areas.

Blistering is the irregular raising of a thin layer at the surface of concrete during or immediately after concrete placement and consolidation, while the concrete is still plastic. They are comparatively shallow in depth and tend to form parallel to one another. The cracks are crazed cracks extending below the surface. They are typically caused by freeze-thaw exposure, scaling begins as small localized patches that can expand and merge together to produce large scaled areas.

Concrete selection should follow guidelines outlined in CAN/ACI A201 “Concrete Materials and Methods of Concrete Construction” and Methods of Test for Concrete.” The concrete supplied should be a Class CC, 32 NPA, B 45 w/cm/cement ratio, with 8% air entrainment. (Assuming 20 mm coarse aggregate is used in the concrete mix design).

For coloured concrete, it is recommended that the colour be a uniformity mixed into the mix of batching. The entrainment should be measured after the colour has been mixed in. It is recommended that the contractor prepare a sample coloured bolt to ensure the customer’s expectations for colour are met.

Concrete coming out of the chute onto graded gravel.

• Uncontrolled dry shrinkage cracks when improper finishing procedures are implemented or the installation of contraction joints is not completed in a timely fashion.

One of the critical elements in proper placement and finishing is to ensure there is sufficient labour on site when the concrete is delivered. Three or more people are generally required, depending on the size of the driveway, the weather, particular design aspects, etc.

In addition, a number of steps should be followed during placement and finishing:

- The subgrade should be dampened without leaving standing water on the subgrade or entrapped air is prevented from escaping. They typically occur when the concrete is still plastic. They are relatively shallow in depth and tend to form parallel to one another. The cracks are crazed cracks extending below the surface. They are typically caused by freeze-thaw exposure, scaling begins as small localized patches that can expand and merge together to produce large scaled areas.

Blistering is the irregular raising of a thin layer at the surface of concrete during or immediately after concrete placement and consolidation, while the concrete is still plastic. They are comparatively shallow in depth and tend to form parallel to one another. The cracks are crazed cracks extending below the surface. They are typically caused by freeze-thaw exposure, scaling begins as small localized patches that can expand and merge together to produce large scaled areas.
Weather Considerations

Rapid concrete surface drying can occur if there is low outdoor relative humidity or if it's very sunny, windy and/or hot outside. Without proper protective measures, this can cause deficiencies including crazing, plastic shrinkage cracks and fisling. Placing the concrete in cold conditions can also lead to paynute, scaling, blistering, and weakened concrete strength.

If placing concrete during a hot, dry or windy day, the following special precautions should be taken:

- Protect concrete from rapid moisture losses by covering it with plastic sheets after screeding, or use wind screens, hay bales, sawdust retardants, chemical curing compounds etc.
- Be prepared for faster setting times during warm weather.
- Protect hardening concrete by curing the concrete immediately after final finish.

Exterior concrete should not be placed when the air temperature is less than or equal to 5°C unless extra precautions are taken. If concrete freezes, then the durability and strength can be reduced by up to 50%.

If placing concrete in cold weather:

- Allow a longer time before finishing.
- Do not perform final finishing before concrete stops bleeding.
- Installing concrete blankets may be necessary to prevent the concrete from freezing in its plastic state.
- Ensure that plastic sheeting used for curing purposes does not come in direct contact with the concrete. Plastic sheeting tends to leave colour streaks on the concrete surface where it is in direct contact with the concrete.
- Never pour concrete on frozen ground.

Curing and Sealing

Deficiencies often occur when concrete is insufficiently cured, when curing is started too late or too early, or when concrete is improperly covered. These deficiencies may include discoloration, crazing, scaling, popouts, uncontrolled shrinkage cracking, and mortar bleeding. For proper curing to occur, it is essential to maintain the required moisture conditions and concrete temperatures. Curing must start immediately after the final finish and can be accomplished by the following methods:

- Roll or spray-on curing membranes/compounds applied as soon as the finishing operations are complete following manufacturer's application instructions, or
- Wetbackup, soakling hoses, waterprooof paper, or polyethylene can be used to keep the surface consistently wet for seven days. Hoses should not be placed in direct contact with the surface until the concrete has obtained sufficient strength to prevent surface damage.

If concrete is placed when temperatures can fall below 5°C, umbrella sheets, insulated blankets or other cold weather curing methods should be used.

Under normal conditions, the concrete may be sealed with a penetrating sealer according to the recommendations of the manufacturer:

- After 20 days if a curing membrane is used, or
- After a period of air drying if water has cured.

Long-term Maintenance

Driveways (e.g. a driveway should not be applied until the concrete has gone through its first winter. If surface finishing and curing are done properly, the slab’s resistance to deicers will be improved over the long term. Ammonium-based deicers or products that contain nitrate or magnesium chlorides should not be used at any time. Damage from salts, deicers, including road salt from vehicles is typically not covered under warranty. So it may be best to simply avoid the use of deicers. Solid, liquid or other environmentally friendly products that do not include nitrate or chlorides can be used instead of deicers for anti-slip/bibration purposes.

Snow and deicing salts should be removed from the concrete driveway surface before they do not sit on the slab for an extended period of time. The driveway should be power washed or hand down in spring to rinse off winter residues (salt and debris).

Concrete sealers should be applied to generate the proper of chlorides from roads and sidewalks. Sealers should be reapplied as necessary (generally every two years for acrylic sealers and every five years for penetrating sealers). Ensure the use of compatible sealers over time: the use of an acrylic sealer initially is not compatible with future use of a penetrating sealer.
Tools Required
• Large roll of plastic for rain protection
• Wheelbarrows and shovels (Note: Filling a rake, use a concrete rake, otherwise separation of the aggregate will occur)
• Water supply for curing and wetting subgrade
• Long-handled (wood or magnesium for air entrained concrete) basher that 180 mm wide minimum
• Edging tool
• Straightedge for screeding
• Vapour retardant compound (which can be applied to the surface between finishing operations following manufacturer’s recommended use)
• Concrete broom for texturing
• Curing materials (burlap, water, chemical curing compound, insulated blankets)

Repairs and Resurfacing
If concrete is properly placed, concrete driveways should require minimal repair. If the surface has failed, the underlying concrete will typically be acceptable for long-term performance. In this case, the top can be removed and a top layer of concrete can be bonded to the older layer. Most admixture suppliers carry products for the top repair of driveways. Care must be taken to prepare the surface and remove any loose concrete. In some cases, a seal may need to be applied prior to the repair mortar being applied.

Sometimes, major cracks can occur due to a subgrade movement and subsequent failure of the slab. Depending on the severity of the problem, crack sealers are available which may diminish the aesthetic value of the driveway but will allow continued performance. Should a major failure occur, then the section will have to be removed and the subgrade re-graded prior to placing the replacement piece. This section should also be closed into the existing slab to minimize any movement between sections.

Key Points to Consider
• Subgrade must be uniform and compact
• Proper drainage needs to be maintained to prevent frost heaving
• Proper concrete selection is important – Class C-G, 32 MPa, 0-45 water/cement ratio, 8% air entrainment
• Water should not be added in the finishing process for proper finishing. If added, a superplasticizer can be added
• Ensure that enough experienced crew members are on hand to handle the volume of concrete ordered for a quick installation
• Do not overwork the surface of concrete in the finishing process
• Cure and protect concrete once it has been placed and finished

For More Information
Available at www.bcrmca.ca.

Concrete Association, Ontario Ready Mix Association, Ready Mixed Concrete Association of Ontario Technical Bulletins.
Available at www.rmcao.org.

The greatest care has been taken to verify the accuracy of information contained herein. However, the publisher, and its publication assumes no liability for any damages, injury or expense that may be incurred or suffered as a result of the use of this publication including products and techniques presented. The views expressed herein do not necessarily represent those of any individual contributor or BC Housing. It is strongly recommended that anyone undertaking any of the procedures contained herein consult with appropriate authorities and obtain proper training in the use of these products and techniques with appropriate qualifications and experience.